<u>21114</u> <u>2011 シラバス</u>

情報数学 I

(Mathematics for Information Engineering)

2年・通年・2単位・必修 情報工学科・担当 内田眞司・山口智浩

〔準学士課程(本科 1-5 年) 学習教育目標〕 〔システム創成工学教育プログラ ム学習・教育目標〕 [JABEE 基準]

(2)

〔講義の目的〕

情報専門学科カリキュラム標準 J07 のコアカリキュラム:離散構造の DS1 から DS4 について IT 技術に必要な離散数学の基礎知識の修得を目的とする.

〔講義の概要〕

離散数学の中でも,集合論,関係と関数,命題論理,述語論理,証明,グラフ理論の各テーマについて講義する.

[履修上の留意点]

講義ノートを毎回きちんととるのは,以下の点で勉学の基本である.

1)教えられたことを整理する,2)頭で記憶しきれないことをノートに記憶させる. 講義中に随時,以前の講義内容を参照するので,情報数学Iのノートを毎回持参すること.

〔到達目標〕

前期中間試験:命題論理(命題,演算,推論、証明)と述語論理(命題関数,限量子)について理解する

前期末試験:集合(基本性質,演算),関係(2項関係,諸性質),関数について理解する

後期中間試験:グラフ(定義,経路,いろいろなグラフ,木グラフ)について理解する

学年末試験:平面的グラフ,切断,一筆書き,双対グラフ,彩色,ネットワーク・フローについて理解する

〔評価方法〕

定期試験成績(4回の単純平均80%),課題(ノート提出を含む20%)で評価する.

〔教科書〕

石村 園子, やさしく学べる離散数学(共立出版), 2007, 2,100円

〔補助教材・参考書〕

R. J. ウィルソン: グラフ理論入門 -原書第4版- (近代科学社), 2,520円

〔関連科目・学習指針〕

情報工学概論、ディジタル回路、論理回路、情報数学 II

<u>2011 シラバス</u> <u>21114</u>

講義項目・内容

講義 項目 週数	講義項目	講義内容	自己 評価 *
第1週	命題論理	命題と真理値 , 真理値表について説明する	всіш ~
第2週	命題論理	命題演算子について説明する	
第3週	命題論理	標準形と推論について説明する	
第4週	命題論理	証明法について説明する	
第5週	述語論理	命題関数について説明する	
第6週	述語論理	限量子について説明する	
第7週	前期中間試験解答	前期中間試験について解説する	
第8週	集合	集合の基本性質について説明する	
第9週	集合	集合の基本演算について説明する	
第10週	関係	二項関係について説明する	
第11週	関係	関係の性質について説明する	
第12週	関係	関係行列について説明する	
第13週	関数	関数と写像について説明する	
第14週	関数	単射、全射、全単射について説明する	
第15週	関数	写像の合成、逆写像について説明する	
前期期末試験			
第16週	前期期末試験解答	前期期末試験について解説する	
第17週	グラフとは何か	点,辺,隣接,多重辺,ループ,単純グラフ	
第18週	グラフの基本的定義	部分グラフ,同型,次数,隣接行列による表現	
第19週	経路	経路(walk),道(path),閉路,連結,切断点,橋	
第 20 週	いろいろなグラフ	完全- , 正則- , 2 部- , (空- , 閉路- , 道- , 車輪- , 補グラフ)	
第 21 週	木グラフ	木の基本的性質,全域木,(基本閉路),根付き木	
第 22 週	グラフの切断	グラフの切断法 (カットセット), 基本カットセット	
第 23 週	後期中間テスト解説	後期中間試験について解説する	
第 24 週	平面的グラフ	平面グラフの性質,平面的グラフ,無限面,オイラーの公式	
第 25 週	グラフの一筆書き	オイラー・グラフ,オイラー閉路,ハミルトン閉路	
第 26 週	双対グラフ	平面グラフの双対グラフ,連結平面グラフ,(正多面体グラフ)	
第 27 週	グラフの彩色1:点彩色	グラフの彩色,k-彩色可能,点彩色の応用	
第 28 週	グラフの彩色2:面彩色	地図の彩色 = 面彩色	
第 29 週	ネットワーク・フロー	ネットワークとは、フローとカット、最大フローの求め方	
第 30 週	まとめ	後期のまとめ	
学年末試験			

* 4:完全に理解した、3:ほぼ理解した、2:やや理解できた、1:ほとんど理解できなかった、0:まったく理解できなかった。 (達成) (達成) (達成) (達成) (達成)