<u>2M109</u> <u>2011 シラバス</u>

機械工作法

(Mechanical Technology

2年・通年・2単位・必修 機械工学科・担当 児玉 謙司

〔準学士課程(本科1-5年) 学習教育目標〕

效育目標 〕 (2) 〔システム創成工学教育プログラム 学習・教育目標〕 [JABEE 基準]

[講義の目的]

各種工作法の原理および基礎知識を理解し、構造物の設計・製作において、合理的かつ信頼性の ある加工法を選択する能力を養う。

〔講義の概要〕

鋳造、塑性加工、溶接および各種微細加工技術について講義を行う。加工法の原理を説明するとともに加工機械、最適な加工条件および加工中に生じる現象などについて解説する。

〔履修上の留意点〕

講義内容を記憶するのではなく理解することが大切である。話しを聞きながら積極的にメモを 取る習慣を身に付けること。

〔到達目標〕

前期中間試験:1)鋳造模型、造型について理解、2)鋳造欠陥についての理解

)

3)各種の鋳造法についての理解、4)溶解炉についての理解

前期末試験: 1)鍛造条件についての理解、2)鍛造作業や鍛造機械についての理解

3)圧延、曲げ、深絞り加工の理解、2)その他の塑性加工法の理解

後期中間試験:1)ガス溶接、被覆アーク溶接の理解、2)各種アーク溶接の理解

3)溶接部の性質についての理解、4)溶接部の強度計算についての理解

学年末試験: 1)放電加工の理解、2)電子ビーム加工の理解

3)レーザー加工の理解、4)超音波加工の理解

5)フォトファブリケーションの理解、6)光造型法についての理解

[評価方法]

定期試験(70%) レポート(30%)を総合して評価する。各定期試験においても60点の合格基準を設ける.各試験と総合評価にて基準をクリアーすることを単位認定の原則とする。

〔教科書〕

「機械系教科書シリ-ズ3 機械工作法」, コロナ社, 平井・和田・塚本共著

「最新 機械製作」, 養賢堂, 械製作法研究会編

〔補助教材・参考書〕

「マイクロ応用加工」, 共立出版, 木本・矢野・杉田・山本共著

その他、配布プリントなど

[関連科目]

1・2年次の機械工作実習、3年次の創造設計製作との関連が深い。本講義目標の達成には材料学、 基礎力学の知識も必要とされる。 <u>2011 シラバス</u> <u>2M109</u>

講義項目・内容

週数	講義項目	講義内容	自己
第1週	鋳造とは	 	評価*
第2週	鋳造模型	鋳造模型の種類と用途について解説する。模型製作上の注意事項を説明し、鋳造製品を設計する際の留意点を理解させる。	
第3週	 	りまれている。 シェルモールド法など鋳型による分類について解説する。	
第4週	 金属の溶解	 地金溶解用の各種炉について解説し、各特徴を理解させる。	
第5週	鋳造欠陥	欠陥の原因を解説し、製品設計の際の留意点を理解させる。	
第6週	特殊な鋳造法	ダイカスト、遠心鋳造法など各種の鋳造法を説明する。	
第7週	塑性加工とは	塑性加工について概観する。	
第8週	鍛造、鍛造作業	鍛造、鍛造作業について解説する	
第9週	鍛造温度	鍛造温度と再結晶の関係について解説する。	
第 10 週	圧延加工	各種の鍛造作業を説明し、それぞれの特徴を理解させる。	
第11週	プレス加工	プレス加工について概説し、各特徴を理解させる。	
第 12 週	曲げ加工、深絞り加工	曲げ加工におけるひずみや応力状態について説明する。深絞り 加工の変形メカニズムについて説明する。	
第 13 週	成形加工 1	スエージ加工、エンボス加工、しごき加工などについて解説する。	•
第14週	成形加工 2	引き抜き加工、押し出し加工について解説する。	
第 15 週	成形加工 3	爆発成形、放電成形、電磁成形等について解説する。	
前期末試験			
第 16 週	溶接とは	溶接の歴史を概観し、溶接の必要性を明らかにする。	
第 17 週	ガス溶接	ガス溶接法について概説し、溶接上の注意事項を理解させる。	
第 18 週	被服アーク溶接	アーク溶接の原理を説明し、良好な名溶接部を得るための条 件を理解させる。	
第 19 週	各種アーク溶接	サブマージアーク溶接、イナートガスアーク溶接、炭酸ガスアーク溶接について説明する。	
第 20 週	各種溶接法	エレクトロスラグ溶接、高周波溶接、ガス圧接などについて説 明する。	,
第 21 週	溶接部の性質	溶接部の組織変化・溶接部の欠陥について解説する。	
第 22 週	溶接部の強度計算	構造物にかかる力から、溶接部にかかる応力を求める。	
第 23 週	微細加工とは	微細加工の必要性について解説する。	
第 24 週	放電加工	放電加工の原理、加工例について解説する。	
第 25 週	電子ビーム加工	電子ビーム発生の原理、加工の特徴、加工例について解説する。	
第 26 週	レーザー加工	レーザー発振の原理、レーザー溶接・加工について解説する。	
第 27 週	超音波加工	超音波振動発生の原理、加工の特徴、加工例について解説する。	
第 28 週	フォト ファブリケーション	エッチング加工、電鋳について解説する。	
第 29 週	光造型加工	光造型法の原理、応用例について解説する。	
第 30 週	薄膜・コーティング加工	各種薄膜成長法、コーティング加工例について解説する。	
学年末試験			

* 4:完全に理解した、3:ほぼ理解した、2:やや理解できた、1:ほとんど理解できなかった、0:まったく理解できなかった。 (達成) (達成) (達成) (達成) (達成)