物質化学工学実験	4年・前期・2単位・必修
(Experiments in Chemical Engineering)	物質化学工学科
	担当 (河越 幹男・直江 一光・西野 悟)
〔学習・教育目標との対応〕	〔JABEE 基準との対応〕
D-1 (100%)	d-2a , d-2b

[実験の目的]

講義で得た知識を実際に応用するには、確実な知識と深い理解が必要である。化学工学 (基礎化学工学,物質化学工学演習(3年),拡散単位操作)に関連した実験を行い、実験を通して理解を深める。

〔実験の概要〕

化学工学に関連した講義で得た知識を確実なものにするために、少人数で実験を行う。毎回、実験レポートを提出させて、指導教員と個別にディスカッションを行い、理解を深める。また、データの整理法と報告書の作成法を修得する。

[履修上の留意点]

実験にあたり、必ず予習を行うこと。実験は、実際に現象に触れ、また、自ら実験データを収集・整理・解析を行うことにより、座学だけでは得られない深い理解を体得するものである。積極的に取り組むこと。また、レポートは自分の力で作成し、提出期日は必ず守ること。提出期日を過ぎたレポートについては一切受理しない。なお、実験時は安全のため作業服、安全メガネ(ガイダンス時に指示する)を着用すること。

〔到達目標〕

手際の良く実験を行い、正確な実験データを収集するとともに、これまでに学んだ種々の式や法則を用いて得られたデータを整理・解析することができるようにする。また、実験結果に対する適切な考察を行い、実際の現象を通して生きた知識を身につける。

〔評価方法〕

実験中の態度(30%),報告書(50%),ディスカッションの内容(20%)で評価する。未提出レポート(提出期限遅れを含む)がある場合には評価は60点未満とする。実験態度が悪い場合には減点する。また正当な理由なき欠課については減点し、欠課時数が20を超えた学生については評価しない。

[教 科 書]

物質化学工学科 4 年実験指針書(奈良高専物質化学工学科編)

[補助教材・参考書]

ポケコンおよびプログラミングマニュアル

〔関連科目〕

化学工学(基礎化学工学、物質化学工学演習(3年)、拡散単位操作)についての理解を必要とする。 また、データ処理のためにポケコン (BASIC 言語)を使いこなせることが必要である。 <u>2011 シラバス</u> <u>4C139</u>

講義項目・内容

神我坦日 9		T	
週数	実験項目	実験内容	自己評 価*
第1週	序論(1)	安全教育	
第2週	序論(2)	実験の概要説明	
第3週	ポアズイユ流れ	粘性流れの理論を用いて水の粘度を測定し、文 献値と比較検討する。	
第4週	単一球の液中終端速度	流体中を落下する単一球の終端速度を測定し, 抵抗係数を求める。	
第5週	次元解析	円管より生ずる液滴の大きさを求め、次元解析 を行う。	
第6週	摩擦圧損失	摩擦係数を測定し、限界 Reynolds 数を決定する。	
第7週	管路の圧力損失	拡大、収縮、エルボにおける圧力損失を測定し、 抵抗係数を求める。	
第8週	オリフィス流出係数	オリフィス流量計の検定を行い、その流出係数を求める。	
第9週	熱伝導度の測定	金属棒の温度分布から熱伝導度を求め、併せて 定数決定法を習得する。	
第10週	強制対流伝熱	境膜伝熱係数を測定し、層流と乱流における熱 移動機構を考察する。	
第11週	臨界レイノルズ数実験	円管内の流動状態を観察する。	
第12週	錯イオン式の決定	SCN-とFe3+の錯イオン形成反応により錯イオン式を決定する。	
第13週	吸光度実験	比色法で鉄の定量実験を行い、応用として水道 水の鉄の定量を試みる。	
第14週	アンドレアゼンピペット	粉体を取り扱う操作の基礎として粒子径の測定 法を理解する。	
第15週	実験予備日	再実験のための予備日	

* 4:完全に理解した, 3:ほぼ理解した, 2:やや理解できた, 1:殆ど理解できなかった, 0:全く理解できなかった。(達成)(達成)(達成)