<u>S1C106</u> <u>2011 シラバス</u>

反応装置工学

(Advanced Chemical Reaction Engineering)

1年・前期・2単位・選択 化学工学専攻・担当 直江 一光

〔準学士課程(本科 1-5 年) 学習教育目標〕 〔システム創成工学教育プログラム 学習・教育目標〕 〔JABEE 基準〕

B-2, D-1

d-1, d-2a

[講義の目的]

異相系反応速度の解析法と反応装置の操作・設計法を修得する。

[講義の概要]

講義と演習からなる。まず、熱と物質の移動を伴う化学反応速度(異相系反応)の解析法を理解する。次ぎに、反応速度論に基づいた異相系反応装置の設計法を解説する。

[履修上の留意点]

反応工学の基本知識を必要とする。

〔到達目標〕

気固系と気液系の反応速度解析と装置設計の手法を習得し,設計式を解く計算技術に習熟する。 まず、物質収支の取り方の基本を理解し、微分方程式の立て方を習得する。次に、移動現象と化学 反応が同時に起こる場合の総括反応速度の解析法を理解する。

〔評価方法〕

成績評価は、試験(60%)、演習(40%)で行う。

〔教科書〕

ノート講義

〔補助教材・参考書〕

0. Levenspiel "Chemical Reaction Engineering"(3rd ed.) 橋本健治著「反応工学」(改訂版) 培風館

〔関連科目〕

拡散单位操作,反応工学,化学反応工学,生物反応工学

<u>2011 シラバス</u> <u>S1C106</u>

講義項目・内容

週数	講義項目	講義内容	己価
第1週	序論	異相系反応の種類と分類	
第2週	反応工学の基礎(1)	反応工学の基礎の復習	
第3週	反応工学の基礎(2)	反応工学の基礎の復習	
第4週	反応器設計の基礎式	反応器の設計方程式	
第5週	流通反応器の流体混合	滞留時間分布関数	
第6週	流通反応器の流体混合	非理想流れのモデル	
第7週	気固系触媒反応(1)	球形触媒の有効係数	
第8週	気固系触媒反応(2)	有効係数に及ぼす触媒形状の影響	
第9週	気固系触媒反応(3)	有効係数に及ぼす温度の影響	
第10週	気固系触媒反応(4)	充填層反応装置の設計方程式	
第11週	気固系触媒反応(5)	反応装置の設計演習	
第12週	気液系反応(1)	反応吸収理論と物質移動モデル	
第13週	気液系反応(2)	境膜説による気液反応速度の解析	
第14週	気液系反応(3)	浸透説と表面更新説による気液反応速度の解析	
第15週	最近のトピックス	反応工学分野における最近のトピックスを紹介する。	
	期末試験		

^{* 4:}完全に理解した, 3:ほぼ理解した, 2:やや理解できた, 1:殆ど理解できなかった, 0:全く理解できなかった。(達成)(達成)(達成)