<u>S2C119</u> <u>2011 シラバス</u>

応用生物反応工学

(Advanced Biochemical Reaction Engineering)

2年・後期・2単位・選択 化学工学専攻・担当 河越幹男

〔準学士課程(本科 1-5 年) 学習教育目標〕 〔システム創成工学教育プログラム 学習・教育目標〕 [JABEE 基準]

D - 1

d-2a, d-2b

〔講義の目的〕

増殖モデルを用いて微生物の増殖過程を定量的に理解し,バイオリアクターの設計の基礎知識を修得する。種々のバイオリアクターの特性と操作法を理解し,それぞれの微生物反応に適したバイオリアクターの形式と操作法を修得する。

[講義の概要]

主に講義形式で行い,単元ごとに演習を入れる。

[履修上の留意点]

生物反応工学,反応工学,生化学の基礎知識を必要とする。

〔到達目標〕

微生物反応の特性や培養特性を理解し、それぞれの場合に適したバイオリアクターの操作・設計法を習得する。

[評価方法]

成績評価は,試験(60%),演習(40%)で行う。

[教 科 書]

山根恒夫著「生物反応工学」(第2版)産業図書

[補助教材・参考書]

O. Levenspiel 著: Chemical Reaction Engineering (Third edition)

[関連科目]

反応装置工学,生物反応工学,反応工学,生化学

<u>2011 シラバス</u> <u>S2C119</u>

講義項目・内容

講義項目· 週数	講義項目	講義内容		己価
但奴	牌 我织口	時表には	*	ІЩ
第1週	序論	微生物の分類と命名法		
第2週	微生物の特性(1)	微生物のサイズ,至適温度,至適 p H		
第3週	微生物の特性(2)	環境と栄養源		
第4週	微生物反応の量論(1)	菌体収率の推算法		
第5週	微生物反応の量論(2)	代謝産物収率の推算法		
第6週	微生物反応の量論(3)	微生物反応の量論に関する演習		
第7週	微生物反応熱	基質消費を基準にした反応熱の推算		
第8週	微生物の増殖速度	比増殖速度,Monod の式		
第9週	微生物の基質消費速度	比基質消費速度,維持代謝,酸素消費速度		
第10週	微生物の代謝物生成速度	比生成速度 , Gaden の分類法		
第11週	微生物反応速度	微生物反応に関する演習		
第12週	回分増殖曲線	2成分モデルに関する演習		
第13週	微生物反応器の操作法(1)	回分操作		
第14週	微生物反応器の操作法(2)	半回分操作		
第15週	微生物反応器の操作法(3)	連続操作		
期末試験				

^{* 4:}完全に理解した, 3:ほぼ理解した, 2:やや理解できた, 1:殆ど理解できなかった, 0:全く理解できなかった。(達成)(達成)(達成)