<u>S2C119</u> <u>2012 シラバス</u>

応用生物反応工学

2年・後期・2単位・選択

(Advanced Biochemical

化学工学専攻・担当 河越 幹男

Reaction Engineering)

[準学士課程学習教育目標]

[システム創成工学教育プログラム学習・教育目標]

(JABEE 基準) d-2a, d-2b

D -

〔講義の目的〕

増殖モデルを用いて微生物の増殖過程を定量的に理解し,バイオリアクターの設計の基礎知識を修得する。種々のバイオリアクターの特性と操作法を理解し,それぞれの微生物反応に適したバイオリアクターの形式と操作法を修得する。

〔講義の概要〕

主に講義形式で行い,単元ごとに演習を入れる。

[履修上の留意点]

生物反応工学,反応工学,生化学の基礎知識を必要とする。

〔到達目標〕

微生物反応の特性や培養特性を理解し、それぞれの場合に適したバイオリアクターの操作・設計法 を習得する。

[評価方法]

成績評価は,試験(60%),演習(40%)で行う。

〔教科書〕

山根恒夫著「生物反応工学」(第2版)產業図書

[補助教材・参考書]

O. Levenspiel 著: Chemical Reaction Engineering (Third edition)

〔関連科目〕

反応装置工学,生物反応工学,反応工学,生化学

<u>2012 シラバス</u> <u>S2C119</u>

週数	講義項目	講義内容	自己 評価*
第1週	序論	微生物の分類と命名法	
第2週	微生物の特性(1)	微生物のサイズ,至適温度,至適 p H	
第3週	微生物の特性(2)	環境と栄養源	
第4週	微生物反応の量論(1)	菌体収率の推算法	
第5週	微生物反応の量論(2)	 代謝産物収率の推算法 	
第6週	微生物反応の量論(3)	微生物反応の量論に関する演習	
第7週	微生物反応熱	基質消費を基準にした反応熱の推算	
第8週	微生物の増殖速度	比増殖速度,Monod の式	
第9週	微生物の基質消費速度	比基質消費速度,維持代謝,酸素消費速度	
第10週	 微生物の代謝物生成速度 	比生成速度,Gaden の分類法	
第11週	微生物反応速度	微生物反応に関する演習	
第12週	回分増殖曲線	2 成分モデルに関する演習	
第13週	微生物反応器の操作法(1)	回分操作	
第14週	微生物反応器の操作法(2)	半回分操作	
第15週	微生物反応器の操作法(3)	連続操作	
期末試験			

講義項目・内容

* 4:完全に理解した, 3:ほぼ理解した, 2:やや理解できた, 1:殆ど理解できなかった, 0:全く理解できなかった。 (達成) (達成) (達成) (達成)