弱 t-ノルム代数と t-コノルム代数のシーケントによる形式化

荒金 憲一

Sequential formulations for weak t-norm algebras and t-conorm algebras

Kenichi ARAGANE

ファジイ集合において AND と OR を一般化した, t-ノルムと t-コノルムが [3], [5] などで定義されている。また,[1] においては,t-ノルムよりも弱い形で弱t-ノルムが定義されている。wとSは [0,1] 上の 2 項演算とする。 $w(a,1) \le a$;w(1,b) = b ; $a \le c$, $b \le d$ ならば $w(a,b) \le w(c,d)$ を満たすものが weak triangular norm (弱 t-ノルム)である。また,S(a,b) = S(b,a) ;S(S(a,b),c) = S(a,S(b,c) ;S(a,1) = 1 ;S(a,0) = a ; $a \le c$, $b \le d$ ならば $S(a,b) \le S(c,d)$ を満たすものが triangular conorm (t-コノルム)である。本論文では,[4] でt-ノルムを扱ったのと同じ方法(ただし,含意(つ)を考えない)で弱t-ノルム,t-コノルムのもつ性質を抽象化した代数系として弱 t-ノルム代数(WTNA),t-コノルム代数(TCNA)を定義し,G. Gentzen の方法([2])でのシーケントによる形式的体系 GWTNA,GTCNA を考える。

§ 1 ワード

[定義1] (ワードの定義)

- (1) 定数 0, 1 はワードである.
- (2) 変数 $p_1, p_2, \ldots, p_n, \ldots$ はワードである.
- (3) $x \ge y$ if y = y y = 0 (3) $x \ge y$ if y = y = 0 (4) $x \ge y$ (5) $x \ge y$ if y = 0 (7) y = 0 (7) y = 0 (8) y = 0 (9) y = 0 (9) y = 0 (10) y = 0 (11) y = 0 (12) y = 0 (13) y
- (4) 以上の(1),(2),(3) によって構成された記号列のみがワードである.

ワード全体の集合をDとする。 2 項演算 * 、 ∨ 、 ∧ と 2 項関係 \leq をもつ代数系 $\mathbf{A} = (D \ ; \ 0, \ 1, \ * , \ \lor , \ \land , \ \leq)$ を考える。 \mathbf{A} ではD の任意の元 x, y, z に対して,次の等号に関する規則が使えるものとする。

 $E1 \quad x = x$

 $E2 \quad x = y \implies y = x$

E3 $x = y, y = z \implies x = z$

 $E4 x = y, x \le z \implies y \le z$

 $E4^{\circ}$ $x = y, z \le x \implies z \le y$

 $EW \quad x = y \implies x * z = y * z$

 $EW^{\circ} \quad x = y \implies z * x = z * y$

 $EC \quad x = y \implies x \lor z = y \lor z$

 $ET \quad x = y \implies x \wedge z = y \wedge z$

§ 2 WTNA

代数系 $A_{\mathbf{w}} = (D; 0, 1, *, \leq)$ を考える.

[定義2] (WTNA の定義)

D の任意の元 x, y, z, u, v に対して、次の $F1 \sim F4$ と $W1 \sim W3$ が成り立つとき、代数系 A_w を弱 t-ノルム代数

(WTNA) とよぶ.

- $F1 0 \leq x$
- $F1^{\circ} \quad x \leq 1$
- $F2 x \leq x$
- F3 $x \le y$, $y \le x \Rightarrow x = y$
- $F4 x \leq y$, $y \leq z \Rightarrow x \leq z$
- W1 $x \leq u$, $y \leq v \Rightarrow x * y \leq u * v$
- $W2 \qquad x * 1 \leq x$
- W3 1 * x = x

[注意1]

- (1) $(EW \Rightarrow CEW^\circ) \Leftrightarrow (x = y, u = v \Rightarrow x * u = y * v)$
- $(2) \quad W1 \Leftrightarrow [\ x \leq y \Rightarrow (\ x * z \leq y * z \ h \supset z * x \leq z * y)]$
- (3) $x * y \le x$, $x * y \le y$
- (4) $x * y = x \Longrightarrow x < y$
- $(5) \quad F1 \Longleftrightarrow 0 * x = x * 0 = 0$

(証明)

- (1): ⇒ について. x = y, u = v とすると x * u = y * u = y * v から成り立つ. ← について. x = y とすると z = z から x * z = y * z と z * x = z * y が成り立つ.
- (2): \Longrightarrow について、 $x \le y$ とすると $z \le z$ で、W1 より $x * z \le y * z$ と $z * x \le z * y$ が成り立つ、 \Longleftrightarrow について、 $x \le u$, $y \le v$ とする、仮定から $x * y \le u * y \le u * v$ で成り立つ.
- (3): $x \le x$, $y \le 1$ で W1, W2 を使うと $x * y \le x * 1 \le x$ より成り立つ. また, $x \le 1$, $y \le y$ で W1, W3 を使うと $x * y \le 1 * y = y$.
- (4): 上の(3)の $x * y \le y$ で仮定と E4 から $x \le y$ が成り立つ.
- (5): ⇒ について、上の(3)から $0 * x \le 0$, $x * 0 \le 0$. また, 仮定 F1 より $0 \le 0 * x$, $0 \le x * 0$. よって, F3 から 0 * x = x * 0 = 0 が成り立つ、 ← について、仮定 0 * x = 0 に上の(4)を使うと $0 \le x$. (証明終)

[定義3] (⊨の定義)

x,y を D の任意の元とする。WTNA で不等式 $x \leq y$ が成り立つとき、 $\models x \leq y$ と書く.

§ 3 GWTNA

WTNAでは、結合法則と交換法則が成り立たないから、シーケントの左辺と右辺のワードは共にちょうど1個ずつとする.

[定義4] (シーケントの定義)

x, y をワードとするとき, WTNA での不等式 $x \le y$ を $x \to y$ で表し, これをシーケントとよぶ.

[4] と同様に弱 t-ノルム代数のシーケントによる形式化を考える.

[定義5] (GWTNAの定義)

弱 t-ノルム代数 (WTNA) のシーケントによる形式的体系 GWTNA を次のように定義する.

- [1] 始シーケント:
 - $(B1) x \rightarrow x$
 - $(B2) \ 0 \rightarrow x$
 - $(B3) x \rightarrow 1$
 - $(B4) x \rightarrow 1 * x$

[2] 推論規則:

(1) 構造上の推論規則:

$$\frac{x \to y \quad y \to z}{x \to z} (c)$$

(2) 演算に関する推論規則:

$$\frac{x \to y}{x * z \to y} (*_{_{1}} \to) \qquad \frac{x \to y}{z * x \to y} (*_{_{2}} \to)$$

$$\frac{x \to y}{x * u \to y} (* \to *)$$

[定義6] (トの定義)

シーケント $x \to y$ が GWTNA で証明可能であるとき, $\vdash x \to y$ と書く.

[注意2] 次の同値性が成り立つ.

$$\frac{1 \rightarrow x \quad x * y \rightarrow z}{y \rightarrow z} \left(c_{\scriptscriptstyle 1} \right) \iff \frac{1 * x \rightarrow y}{x \rightarrow y} \left(1 \rightarrow \right) \iff \vdash x \rightarrow 1 * x \quad (B4)$$

(証明)

$$(\ c_{_{1}})\Longrightarrow (1\rightarrow): \ \underline{1\rightarrow 1 \quad \ 1*x\rightarrow y}$$

$$(1 \rightarrow) \Longrightarrow (B4) : \underbrace{1 * x \rightarrow 1 * x}_{x \rightarrow 1 * x}$$

$$(B4) \Longrightarrow (c_1): \underbrace{\frac{1 \to x \quad y \to y}{1 * y \to x * y}}_{y \to x * y} \underbrace{\frac{y \to x * y}{1 * y \to x * y}}_{y \to z}$$
[注章3.1
$$(B4) \Longrightarrow (B3)$$

(証明終)

§ 4 WTNA と GWTNA の演繹的同値性

[定義7] (WTNA での等号の定義)

 $\vdash x \to y$ かつ $\vdash y \to x$ のとき $x \equiv y$ とすれば、 \equiv は同値関係である.そこで D/\equiv をあらためて D とし、 \equiv を \equiv と みなしたものを WTNA での等号とする.

[注意4]

WTNA では 等号に関する規則 $E1 \sim E4$ °と EW, EW°が成り立つ.

 \equiv が同値関係であることは、次の E1, E2, E3 からいえる.

(E1): 始シーケント(B1)から成り立つ.

(E2): x = y とすると $y \rightarrow x$ かつ $x \rightarrow y$ から y = x が成り立つ.

 $(E3): \quad x = y \text{ かつ } y = z \text{ とすると} \quad \underline{x \to y \quad y \to z} \quad \underline{z \to y \quad y \to x} \quad \text{より } x = z \text{ が成り立つ}.$

$$(E4\degree)$$
: $x=y$, $z \le x$ とすると $z \to x$ $x \to y$ $z \to y$

$$(EW): \quad x = y \ \, \forall \, \forall \, \exists \, \xi \quad \underline{x \rightarrow y \quad z \rightarrow z} \\ \hline x + z \rightarrow y + z \qquad \qquad \underline{y \rightarrow x \quad z \rightarrow z} \\ \hline y + z \rightarrow x + z$$

$$(EW^{\circ}): x = y \quad \xi \neq \delta \quad \xi \quad \frac{z \rightarrow z \quad x \rightarrow y}{z * x \rightarrow z * y} \qquad \frac{z \rightarrow z \quad y \rightarrow x}{z * y \rightarrow z * x}$$

(証明終)

[4] と同様に次の3つの定理が成り立つ.

[定理1]

$$x$$
, y がワードのとき, $\exists x \leq y \implies \exists x \neq y$

(証明)

WTNA の公理をシーケントにしたものが GWTNA で証明可能であることを示せばよい.

- (F1): 始シーケント(B2)から成り立つ.
- (F1°): 始シーケント(B3)から成り立つ.
- (F2): 始シーケント(B1)から成り立つ.
- (F3): [定義7]から明らかである.

$$(F4): \quad \underline{x \to y \quad y \to z} \\ x \to z$$

$$(W1): \quad \frac{x \to u \quad y \to v}{x * y \to u * v}$$

$$(W3)$$
: $x \to x$ と $(B4)$ から成り立つ. $1 * x \to x$

(証明終)

[定理2]

$$x, y \text{ fig-Folia}, \vdash x \rightarrow y \implies \models x \leq y$$

(証明)

- [1] 始シーケントについて:
- (B1): (F2)から成り立つ.
- (B2): (F1)から成り立つ.
- (B3): (F1°)から成り立つ.
- [2] 推論規則について:
- (c): $x \le y$, $y \le z$ とすると (F4) から $x \le z$.
- $(*, \rightarrow)$: $x \leq y$ とすると [注意 1] の (3) から $x * z \leq x$ で $x * z \leq y$ が成り立つ.
- $(* \to): x \le y$ とすると [注意 1] の (3) から $z * x \le x$ で $z * x \le y$ が成り立つ.
- $(* \rightarrow *)$: $x \leq y$, $u \leq v$ とすると W1 から $x * u \leq y * v$ が成り立つ.

(証明終)

[定理1]と[定理2]から次の定理が成り立つ.

[定理3] WTNA と GWTNA は演繹的に同値である.

§ 5 TCNA

代数系 $\mathbf{Ac} = (D; 0, 1, \vee, \leq)$ を考える.

[定義 8] (TCNA の定義)

D の任意の元 x, y, z, u, v に対して, [定義 2]の $F1 \sim F4$ と次の $C1 \sim C4$ が成り立つとき, 代数系 AC を t-コノルム代数 (TCNA) とよぶ.

- C1 $x \le u$, $y \le v \implies x \lor y \le u \lor v$
- $C2 \quad x \lor 0 = x$
- C3 $x \lor y = y \lor x$
- $C4 \quad (x \lor y) \lor z = x \lor (y \lor z)$

[注意5]

- (1) $EC \Leftrightarrow (x = y, u = v \Rightarrow x \lor u = y \lor v)$
- (2) $C1 \Leftrightarrow (x \leq y \Rightarrow x \lor z \leq y \lor z)$
- $(3) \quad x \leq x \vee y \ , \quad y \leq x \vee y$
- (4) $x \lor y = y \implies x \le y$
- (5) $F1^{\circ} \iff x \vee 1 = 1$

(証明)

- (1): ⇒ について、x = y, u = v とすると仮定 EC と C3 から $x \lor u = y \lor u = u \lor y = v \lor y = y \lor v$. \Leftarrow について、x = y とすると z = z から $x \lor z = y \lor z$.
- (2): \Rightarrow について、 $x \le y$ とすると $z \le z$ で、仮定から $x \lor z \le y \lor z$. \Leftarrow について、 $x \le u$, $y \le v$ とすると 仮定と C3 から $x \lor y \le u \lor y = y \lor u \le v \lor u = u \lor v$ で成り立つ.
- (3): $x \le x$, $0 \le y$ に C2, C1 を使うと $x = x \lor 0 \le x \lor y$. また, $0 \le x$, $y \le y$ に C2, C3, C1 を使うと $y = y \lor 0 = 0 \lor y \le x \lor y$.
- (4): 上の(3)の $x \le x \lor y$ に E4°を使って, 仮定の式を代入すると $x \le y$.
- (5): ⇒ について、上の(3)から $1 \le x \lor 1$ 、また、仮定 F1°より $x \lor 1 \le 1$ から $x \lor 1 = 1$ が成り立つ、 ← について、仮定に上の(4)を使うと成り立つ.

[定義3]と同様に TCNA で不等式 $x \leq y$ が成り立つとき、 $\models x \leq y$ と書く.

§ 6 GTCNA

[4] と同様にシーケントを定義する

[定義9] (シーケントの定義)

- (1) ワードの有限列をギリシア大文字 Γ , Δ などで表す.
- (2) ワードの有限列 b_1, \ldots, b_n を Γ とし、a をワードとするとき、TCNA での不等式 $a \leq b_1 \vee \cdots \vee b_n$ を $a \to \Gamma$ で表し、これをシーケントとよぶ。 ただし、a は 空でないとする。 また、 Γ が空のとき($\Gamma = \emptyset$ と書く)は、 $a \leq 0$ とする。
- [4] と同様に t-コノルム代数のシーケントによる形式化を考える.

[定義 10] (GTCNA の定義)

t-コノルム代数 (TCNA) のシーケントによる形式的体系 GTCNA を次のように定義する.

- [1] 始シーケント:
 - $(B1) x \rightarrow x$
 - $(B2) \ 0 \rightarrow x$
 - $(B3) x \rightarrow 1$
 - $(B5) x \lor 0 \rightarrow x$

- [2] 推論規則:
- (1) 構造上の推論規則:
 - (1.1) 増 (weakening)の規則

$$\frac{a \to \Gamma}{a \to \Gamma, \, b} \, (\to w \,)$$

(1.2) 換 (exchanging)の規則

$$\frac{a \rightarrow \Gamma,\, b,\, c,\, \Delta}{a \rightarrow \Gamma,\, \mathrm{c},\, b,\, \Delta}\, (\, \rightarrow e\,)$$

(1.3) 切 (cut) の規則

$$\frac{a \rightarrow \Gamma, c \quad c \rightarrow \Delta}{a \rightarrow \Gamma, \Delta} \, (\rightarrow c_{_{\! 2}} \,)$$

(2) 演算に関する推論規則:

$$\frac{a \to \Gamma,\, b,\, c}{a \to \Gamma,\, b \,\vee\, c}\,(\,\to\,\vee\,\,) \qquad \frac{a \to \Gamma \quad b \to \Delta}{a \,\vee\, b \to \Gamma,\, \Delta}\,(\,\,\vee\,\to\,)$$

[定義6]と同様にシーケント $x \to y$ が GTCNA で証明可能であるとき、 $\vdash x \to y$ と書く.

[注意6] 次の同値性が成り立つ.

$$\frac{a \to \Gamma, c \qquad c \to 0}{a \to \Gamma} \left(\ c_{_{3}} \right) \Longleftrightarrow \frac{a \to \Gamma, \, 0}{a \to \Gamma} \left(\to 0 \ \right) \Longleftrightarrow \, \vdash x \, \lor \, 0 \to x \, \left(\textit{B}5 \right)$$

(証明)

$$(c_3) \Longrightarrow (\to 0) \underline{: a \to \Gamma, 0 \qquad 0 \to 0}$$

$$a \to \Gamma$$

$$(\to 0) \Longrightarrow (R5) : x \to x \qquad 0 \to 0$$

$$(\rightarrow 0) \Longrightarrow (B5) : \underbrace{x \rightarrow x \quad 0 \rightarrow 0}_{x \lor 0 \rightarrow x, 0}$$

$$(B5)$$
 ⇒ $(c_{_3})$: $\Gamma = b_{_1}, \ldots, b_{_n}$ とする.

$$\frac{a \rightarrow b_1, \dots, b_n, c \quad c \rightarrow 0}{\underbrace{a \rightarrow b_1, \dots, b_n, 0}} (c_2) \qquad \underbrace{\frac{b_1 \rightarrow b_1 \quad b_2 \rightarrow b_2}{b_1 \lor b_2 \rightarrow b_1, b_2}}_{\underbrace{b_1 \lor b_2 \rightarrow b_2, b_2 \rightarrow b_2, b_2}}_{\underbrace{b_1 \lor b_2 \rightarrow b_2, b_2$$

[注意7] (B5)⇒(B2)

(証明終)

§ 7 TCNA と GTCNA の演繹的同値性

[定義7]と同様に $\vdash x \to y$ かつ $\vdash y \to x$ のとき $x \equiv y$ とし, $D/_{\equiv}$ をあらためて D として \equiv を = とみなしたものを TCNA での等号とする.

[注意8]

TCNA では 等号に関する規則 $E1 \sim E4$ ° と EC が成り立つ.

(証明)

 \equiv が同値関係であることと $E1 \sim E4$ °については, [注意 4] と同様にできる.

WTNA の場合と同様に次の3つの定理が成り立つ.

[定理4] x, y がワードのとき, $\exists x \leq y \implies \exists x \to y$ (証明)

 $F1 \sim F4$ は [定理1] と同様にできる.

(C1):
$$\frac{x \to u \quad y \to v}{x \lor y \to u , v}$$
$$\frac{x \lor y \to v \lor v}{x \lor y \to v \lor v}$$

(C2):
$$\frac{x \to x}{x \to x, 0}$$
 (B5) $\text{this} \vdash x \lor 0 \to x.$
$$\frac{x \to x}{x \to x \lor 0}$$

$$(C3): \qquad \begin{array}{c} x \rightarrow x \quad y \rightarrow y \\ \hline x \lor y \rightarrow x, y \\ \hline x \lor y \rightarrow y, x \\ \hline x \lor y \rightarrow y \lor x \end{array} \qquad \begin{array}{c} y \rightarrow y \quad x \rightarrow x \\ \hline y \lor x \rightarrow y, x \\ \hline y \lor x \rightarrow x, y \\ \hline y \lor x \rightarrow x \lor y \end{array}$$

$$(C4): \underbrace{\frac{x \to x \quad y \to y}{x \lor y \to x, y} \quad z \to z}_{x \lor y \to x, y \to x, y \to z} \underbrace{\frac{y \to y \quad z \to z}{y \lor z \to y, z}}_{x \lor (y \lor z) \to x, y, z} \underbrace{\frac{x \to x \quad y \lor z \to y, z}{x \lor (y \lor z) \to x, y, z}}_{x \lor (y \lor z) \to (x \lor y), z} \underbrace{\frac{x \to x \quad y \to z}{x \lor (y \lor z) \to (x \lor y), z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

$$(E4): \underbrace{\frac{x \to x \quad y \to y}{x \lor y}}_{x \lor y \to x, y} \underbrace{\frac{y \to y \quad z \to z}{x \lor (y \lor z) \to (x \lor y), z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

$$(E4): \underbrace{\frac{y \to y \quad z \to z}{x \lor y \lor z \to y, z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

$$(E4): \underbrace{\frac{y \to y \quad z \to z}{x \lor y \lor z \to y, z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

$$(E4): \underbrace{\frac{y \to y \quad z \to z}{y \lor z \to y, z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

$$\underbrace{\frac{y \to y \quad z \to z}{y \lor z \to y, z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

$$\underbrace{(E4): \underbrace{x \to x \quad y \to z}_{y \lor z \to y, z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

$$\underbrace{(E4): \underbrace{x \to x \quad y \to z}_{y \lor z \to x, y, z}}_{x \lor (y \lor z) \to (x \lor y) \lor z}$$

[定理 5] a, b_1, \ldots, b_n がワードのとき,ト $a \to b_1, \ldots, b_n \Longrightarrow$ ト $a \le b_1 \lor \cdots \lor b_n$ (証明)

[1] 始シーケントについて:

(B1)~(B3)については[定理2]と同様にできる.

(B5): (C2) から成り立つ.

[2] 推論規則について:

ワードの有限列 Γ が b_1, \ldots, b_n のとき, $b_1 \vee \cdots \vee b_n$ を x などと書くことにする.

 $(\rightarrow w)$: $a \le x$ とすると [注意 5] の(3)から $x \le x \lor b$ で $a \le x \lor b$ が成り立つ. $x = \emptyset$ のとき. $a \le 0$ とすると F1 から $0 \le b$ で $a \le b$ が成り立つ.

 $(\rightarrow e)$: $a \le x \lor b \lor c \lor y$ とする. C3, C4 から $x \lor b \lor c \lor y = x \lor c \lor b \lor y$ で $a \le x \lor c \lor b \lor y$ が成り立つ.

 (c_{a}) : $a \leq x \vee c$, $c \leq y \geq 5$.

- (1) $x \neq \emptyset$ かつ $y \neq \emptyset$ のとき. $x \leq x$, $c \leq y$ に C1 を使うと $x \vee c \leq x \vee y$ で $a \leq x \vee y$ が成り立つ.
- (2) $x = \emptyset$ かつ $y \neq \emptyset$ のとき. $a \leq c$, $c \leq y$ とすると F4 から $a \leq y$ が成り立つ.
- (3) $x \neq \emptyset$ かつ $y = \emptyset$ のとき. $a \leq x \lor c$, $c \leq 0$ とする. $x \leq x$, $c \leq 0$ に C1 を使うと $x \lor c \leq x \lor 0$. C2 より $x \lor 0 = x$ で $x \lor c \leq x$ から $a \leq x$ が成り立つ.
- (4) $x = \emptyset$ かつ $y = \emptyset$ のとき. $a \le c$, $c \le 0$ とすると F4 から $a \le 0$ が成り立つ.
- $(\rightarrow \lor)$: $a \le x \lor b \lor c$ とすると C4 から $x \lor b \lor c = x \lor (b \lor c)$ で $a \le x \lor (b \lor c)$ が成り立つ.

 $(\lor \to)$: $a \le x$, $b \le y$ とすると C1 から $a \lor b \le x \lor y$ が成り立つ. $x = \emptyset$ または $y = \emptyset$ のときは, C1, C2 から成り立つ.

[定理4]と[定理5]から次の定理が成り立つ.

[定理6] TCNA と GTCNA は演繹的に同値である.

§ 8 TNA

代数系 $\mathbf{AT} = (D ; 0, 1, \land, \leq)$ を考えると、TCNA と双対に、[4] において t-ノルム代数 (TNA) は、次のように定義されている。

[定義 11] (TNA の定義)

D の任意の元 x , y , z , u , v に対して、定義2 の $F1\sim F4$ と次の $T1\sim T4$ が成り立つとき、代数系 AT を t-ノル ム代数 (TNA) とよぶ。

- T1 $x \leq u$, $y \leq v \Longrightarrow x \wedge y \leq u \wedge v$
- $T2 \quad x \land 1 = x$
- T3 $x \wedge y = y \wedge x$
- $T4 \quad (x \wedge y) \wedge z = x \wedge (y \wedge z)$
- [1]と同様に次のことが成り立つ.

[注意9]

代数系 **A** が $F1 \sim F4$, $C1 \sim C4$, $T1 \sim T4$ を満たすとする. $w(x, y) \stackrel{\text{def}}{=} (x \wedge y) \wedge (x \vee y)$ とおくと, 次の (1), (2), (3), (4) が成り立つ.

- (1) w(x, 1) = x
- (2) w(1, y) = y
- (3) w(x, y) = w(y, x)
- (4) w(x, y)は弱t-ノルム代数の公理を満たす。(証明)
- (1):[注意 5] の(5) より $x \lor 1 = 1$ であるから $w(x, 1) = (x \land 1) \land (x \lor 1) = x \land 1 = x$.
- (2): $w(1, y) = (1 \land y) \land (1 \lor y) = y \land 1 = y$.
- (3): C3 と T3 から明かである.
- (4): $x \le u$, $y \le v$ とする. $x \land y \le u \land v$ かつ $x \lor y \le u \lor v$ より $(x \land y) \land (x \lor y) \le (u \land v) \land (u \lor v)$ で $w(x, y) \le w(u, v)$ が成り立つ. これと上の (1), (2) から w(x, y) は 弱 t-ノルム代数の公理を満たす.

参考文献

- [1] János C. Fodor, Strict preference relations based on weak t-norms, Fuzzy Sets and Systems, 43 (1991), 327-336.
- [2] G. Gentzen, *Untersuchungen über das logische Schliessen* I, II, Mathematische Zeitschrift 39 (1935), 176-210, 405-431.
- [3] 堀内清光, ファジィ数学, 大阪教育図書, 1998.
- [4] 竹村康・荒金憲一, t-ノルム代数のシーケントによる形式化, 大阪産業大学論集 自然科学編 第 92 号 (1993), 19-22.
- [5] 田中英夫, ファジィモデリングとその応用, 朝倉書店, 1990.