擬補分配束のシーケントによる形式化

荒金 憲一

Sequential formulations for pseudocomplemented distributive lattices

Kenichi ARAGANE

最小元 0 と最大元 1 をもつ分配束 (bounded distributive lattice (BDL): $F1 \sim F7^\circ$ を満たす) で * と \(\times \) Vに関する性質(ド・モルガン律に対応するもので F8, $F8^\circ$) と 0, 1 についての性質 (F9, $F9^\circ$) を満たす代数系が [2], [5], [7] で定義されている擬補分配束 (pseudocomplemented distributive lattice (PDL): [2] の Pと同じ)である。本論文では,擬補分配束で成り立つ性質を調べる。そして擬補分配束と演繹的に同値な,G. Gentzen の方法 ([6]) でのシーケント (式) による形式的体系 GPDL を考える。 [8] では,分配律が成り立たない擬補束を考え,シーケントによる形式的体系を扱って決定問題を解いているが,本論文では分配束としての擬補束を扱う。

§1 ワード

[3], [4] と同様にワードを定義する.

[定義1] (ワードの定義)

- (1) 定数 0, 1 はワードである.
- (2) 変数 $p_1, p_2, \ldots, p_n, \ldots$ はワードである.
- (3) $x \ge y$ $my my \ge x \land y$, $x \lor y$, x^* $my my \ge x$.
- (4) 以上の(1),(2),(3) によって構成された記号列のみがワードである.

ワード全体の集合を A とし、2 項演算 \lor 、 \land と 1 項演算 * をもつ代数系 $\mathbf{A} = (A, 0, 1, \lor, \land, *)$ を考える.

§ 2 擬補分配束(PDL)

[定義2] (PDLの定義)

A の任意の元x, y, z に対して、次の $F1 \sim F9$ °が成り立つとき、代数系 A を擬補分配束 (PDL) とよぶ.

F1	$x \wedge 0 = 0$	$F1$ $^{\circ}$	$x \vee 1 = 1$
F2	$x \wedge 1 = x$	$F2$ $^{\circ}$	$x \lor 0 = x$
F3	$x \wedge x = x$	$F3$ $^{\circ}$	$x \lor x = x$
F4	$x \wedge y = y \wedge x$	$F4$ $^{\circ}$	$x \vee y = y \vee x$
F5	$(x \wedge y) \wedge z = x \wedge (y \wedge z)$	$F5$ $^{\circ}$	$(x \lor y) \lor z = x \lor (y \lor z)$
F6	$x \land (x \lor y) = x$	$F6$ $^{\circ}$	$x \lor (x \land y) = x$
F7	$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$	$F7$ $^{\circ}$	$x \lor (y \land z) = (x \lor y) \land (x \lor z)$
F8	$x \wedge (x \wedge y)^* = x \wedge y^*$	F8 $^{\circ}$	$(x \lor y)^* = x^* \land y^*$
F9	$0^* = 1$	F9°	$1^* = 0$

[定義3] (不等式の定義)

x, y を A の任意の元とする. $x \land y = x$ が成り立つとき, $x \le y$ と書く.

[1], [3], [4] と同様にして, 次の定理が成り立つ.

[定理 1] 代数系 \mathbf{A} が 擬補分配束 (PDL) であり(つまり $F1 \sim F9^\circ$ が成り立つ), かつ定義 3 により $x \leq y$ が定義される $\Longrightarrow A$ の任意の元 x, y, z に対して \mathbf{A} で次の $T1 \sim T12^\circ$ が成り立つ.

- $T1 \quad x \leq x$
- $T2 \quad x \leq y, \ y \leq x \iff x = y$
- $T3 \quad x \leq y, \ y \leq z \Longrightarrow x \leq z$
- $T4 \quad x \leq y \iff x \vee y = y$
- $T5 \quad 0 \leq x$

 $T5^{\circ} \quad x \leq 1$

*T*6 $x \land y \le x, x \land y \le y$

- T6 ° $x \leq x \vee y$, $y \leq x \vee y$
- T7 $z \le x$, $z \le y \Longrightarrow z \le x \land y$
- T7° $x \leq z$, $y \leq z \Longrightarrow x \vee y \leq z$
- $T8 \quad x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$
- $T8 \circ (x \lor y) \land (x \lor z) \le x \lor (y \land z)$

- $T9 \quad x \leq y \Longrightarrow y^* \leq x^*$
- $T10 \quad x \wedge y \leq 0 \Longrightarrow x \leq y^*$
- $T11 \quad x \wedge x^* \leq 0$
- $T12 \quad x \land (x \land y)^* \le x \land y^*$

T12° $x^* \wedge y^* \leq (x \vee y)^*$

(証明)

==:

 $T1 \sim T8$ °は[3]の定理1の証明と同じである.

 $T9: x \le y$ とすると T4 より $x \lor y = y$. F8°から $(x \lor y)^* = x^* \land y^* = y^*$ で $y^* \le x^*$ が成り立つ.

T10: $=: x \wedge y < 0$ とすると T9 から $0^* < (x \wedge y)^*$. これと T1 に注意 2 の \wedge の単調性を使い,F8,F9,F2 から $x \wedge y^* = x \wedge (x \wedge y)^* \geq x \wedge 0^* = x \wedge 1 = x$. T6 より $x \wedge y^* \leq x$ で $x \wedge y^* = x$ から $x \leq y^*$ が成り立つ。 $=: x \leq y^*$ とすると $x \wedge y^* = x$ から $x \wedge y = (x \wedge y^*) \wedge y = x \wedge (y \wedge y^*) \leq y \wedge y^* = y \wedge (y \wedge 1)^* = y \wedge 1^* = y \wedge 0 = 0$.

T11: T10 の = で x を x^* に, y を x にすれば $x^* \land x \le 0 = x^* \le x^*$ であり、T1 により $x \land x^* \le 0$ が成り立つ。

T12: $(x \land (x \land y)^*) \land y = (x \land y) \land (x \land y)^* \le 0$ より T10 から $x \land (x \land y)^* \le y^*$. \land の単調性から $x \land (x \land y)^* \le x \land y^*$. よって F5, F3 から $x \land (x \land y)^* \le x \land y^*$ が成り立つ.

 $T12^{\circ}$: $(x^* \wedge y^*) \wedge (x \vee y) = (y^* \wedge x \wedge x^*) \vee (x^* \wedge y \wedge y^*) \leq 0 \vee 0 = 0$ より T10 を使って $x^* \wedge y^* \leq (x \vee y)^*$ が成り立つ.

⇐=:

定義 3 により $x \le y$ が定義されることと $F1 \sim F7$ °は [3] の定理 1 の証明と同じである.

F8: T6 の $x \land y \le y$ に T9 を使うと $y^* \le (x \land y)^*$. \land の単調性から $x \land y^* \le x \land (x \land y)^*$. これと T12 で T2 により $x \land (x \land y)^* = x \land y^*$ が成り立つ.

 $F8^{\circ}$: $T6^{\circ}$ で T9 を使うと $(x \lor y)^{*} < x^{*}$, y^{*} . これらに T7 を使うと $(x \lor y)^{*} < x^{*} \land y^{*}$. これと $T12^{\circ}$ から $(x \lor y)^{*} = x^{*} \land y^{*}$ が成り立つ.

F9: T6 より $1 \land 0 < 0$ で T10 を使うと $1 < 0^*$. $T5^\circ$ から $0^* < 1$ で $0^* = 1$ が成り立つ.

 $F9^{\circ}$: T10 の = で x を 1^{*} に, y を 1 にすると T1 により 1^{*} \wedge $1 \leq 0$. F2 から 1^{*} \wedge $1 = 1^{*}$ で $1^{*} \leq 0$. T5 から $0 \leq 1^{*}$ で $1^{*} = 0$ が成り立つ.

[3]と同様にして、次のことが成り立つ.

[注意 1] 束 $(T1 \sim T4 \ \ \ T6 \sim T7^\circ)$ が成り立つ) において、次の (1), (2) が成り立つ.

- (1) $[x < x^{**}$ かつ $(x < y \Longrightarrow y^* < x^*)] \Longleftrightarrow [x < y^* \Longrightarrow y < x^*]$
- (2) $[(x \lor y)^* \le x^* \land y^*] \iff [x \le y \implies y^* \le x^*]$

(証明)

- (1): $==: x \le y^*$ とすると仮定から $y^{**} \le x^*$ であり、 $y \le y^{**} \le x^*$. ==: T1 より $x^* \le x^*$ で仮定から $x \le x^{**}$ が成り立つ。 次に $x \le y$ とすると $x \le y \le y^{**}$ より $x \le y^{**}$ であり、仮定から $y^* \le x^*$ が成り立つ。
- (2): $==: x \le y$ とすると T4 から $x \lor y = y$ で仮定の不等式の左辺にこれを代入して $y^* \le x^* \land y^*$. T6 より $x^* \land y^* \le x^*$ で $y^* \le x^*$ が成り立つ. ==: T6° で仮定を使うと $(x \lor y)^* \le x^*$, y^* . T7 により $(x \lor y)^* \le x^* \land y^*$ が成り立つ. ==: T6° で仮定を使うと $(x \lor y)^* \le x^*$, y^* . T7 により $(x \lor y)^* \le x^* \land y^*$ が成り立つ.
- [3] と同様にして、次のことが成り立つ.

[注意2] 束において,次の(1),(2)が成り立つ.

- (1) $x \le y$, $u \le v \Longrightarrow x \land u \le y \land v$ (への単調性)
- (2) $x \le y$, $u \le v \Longrightarrow x \lor u \le y \lor v$ (\lor の単調性) (証明)
- (1): $x \le y$, $u \le v$ とする. $x \land u \le x \le y$ から $x \land u \le y$. 同様に $x \land u \le u \le v$ から $x \land u \le v$. T7 を使うと $x \land u < y \land v$ が成り立つ.
- (2): 同様にして $x < y < y \lor v$, $u < v < y \lor v$ で T7 から $x \lor u < y \lor v$ が成り立つ. (証明終)
 - [2], [5] と同様にして, 次の性質が成り立つ.

[注意3] 擬補分配束(PDL) において、次のことが成り立つ、ただし、F8°を仮定しない、

- (1) $x \wedge y = 0 \iff x \leq y^*$
- $(2) \quad x \wedge x^* = 0$
- (3) $x \le x^{**}$
- (4) $x^{***} = x^*$
- (5) $x \wedge y = 0 \Longrightarrow x^{**} \wedge y = 0$
- (6) $x \leq y \Longrightarrow y^* \leq x^*$
- (7) $(x \lor y)^* = x^* \land y^*$
- (8) $(x \wedge y)^{**} = x^{**} \wedge y^{**}$
- (9) $(x \vee y)^{**} = (x^{**} \vee y^{**})^{**}$
- $(10) (x \lor x^*)^* = 0$
- (11) $x \leq y^* \iff y \leq x^*$
- (12) $x^* \vee y^* < (x \wedge y)^*$

(証明)

- (1): == : $x \wedge y = 0$ とすると $x \wedge y^* = x \wedge (x \wedge y)^* = x \wedge 0^* = x \wedge 1 = x$ から $x \leq y^*$ が成り立つ. == : $x \leq y^*$ とすると $x \wedge y \leq y^* \wedge y = y \wedge y^* = y \wedge (y \wedge 1)^* = y \wedge 1^* = y \wedge 0 = 0$ と $0 \leq x \wedge y$ から $x \wedge y = 0$ が成り立つ
- (2): 定理 1 の T 11 11 の T 11 の
- (3): (2), (1) を使うと $x \wedge x^* = 0$ から $x < (x^*)^*$.
- (4): 上の(3) より $x^* < (x^*)^{**}$. また $x < (x^*)^*$ でへの単調性から $x \wedge x^{***} < x^{**} \wedge x^{***} = 0$. $x^{***} \wedge x = 0$ で上の(1) を使うと $x^{***} < x^*$. よって $x^{***} = x^*$ が成り立つ.
- (5): $==: x \land y = 0$ のとき、上の(1)により $y \le x^*$ $x^{**} \land y \le x^{**} \land x^* = 0$ から $x^{**} \land y = 0$ が成り立つ.
- $: x^{**} \land y = 0$ のとき、上の(3) とへの単調性により $x \land y \le x^{**} \land y = 0$ から $x \land y = 0$ が成り立つ.
- (6): $x \le y$ とする. $x \land y^* \le y \land y^* = 0$ から $x \land y^* = 0$ で上の(1)により $y^* \le x^*$ が成り立つ.
- (7): x, $y < x \lor y$ で上の (6) を使うと $(x \lor y)^* < x^*$, y^* . T7 から $(x \lor y)^* < x^* \land y^*$. 次に定理 1 の T12°の証明と同様にして $(x^* \land y^*) \land (x \lor y) = (y^* \land x \land x^*) \lor (x^* \land y \land y^*) = 0 \lor 0 = 0$ より $x^* \land y^* < (x \lor y)^*$. よって $(x \lor y)^* = x^* \land y^*$ が成り立つ.
- (8): $x \land y \le x$, y で上の(6)を2回使うと $(x \land y)^{**} \le x^{**}$, y^{**} より $(x \land y)^{**} \le x^{**} \land y^{**}$. 次に $y \land (x \land (x \land y)^{**})$

 $y)^*)=(x \wedge y)\wedge(x \wedge y)^*=0$ で上の (5) を使うと $x \wedge (y^{**}\wedge(x \wedge y)^*)=y^{**}\wedge(x \wedge (x \wedge y)^*)=0$. これに再び上の (5) を使うと $(x^{**}\wedge y^{**})\wedge(x \wedge y)^*=x^{**}\wedge(y^{**}\wedge(x \wedge y)^*)=0$. 上の(1)により $x^{**}\wedge y^{**}\leq (x \wedge y)^{**}$. よって $(x \wedge y)^{**}=x^{**}\wedge y^{**}$ が成り立つ.

- (9): 上の(7)と(4)を使って $(x^{**} \lor y^{**})^{**} = (x^{***} \land y^{***})^* = (x^* \land y^*)^* = (x \lor y)^{**}$.
- (10): 上の(7)と(2)を使って $(x \lor x^*)^* = x^* \land x^{**} = 0$.
- (11): $==: x \le y^*$ とすると上の(3)と(6)を使って $y \le y^{**} \le x^*$. ===も同様にできる.
- (12): $x \land y < x$, y に上の(6)を使って x^* , $y^* < (x \land y)^*$ で T7°から $x^* \lor y^* < (x \land y)^*$. (証明終)
 - [2], [5] と同様にして, 次の同値性が成り立つ.

[注意4] AをBDLとすると、次の(1)~(5)は互いに同値である.

- (1) **A** は PDL である(つまり F8, F8°, F9, F9°が成り立つ).
- (2) $[(F8)x \wedge (x \wedge y)^* = x \wedge y^*]$ for $[x \wedge 0^* = x]$ for $[0^{**} = 0]$
- $(3) \quad x \wedge y = 0 \Longleftrightarrow x \leq y^*$
- (4) $[x \wedge x^* = 0]$ かつ $[(F8^\circ)(x \vee y)^* = x^* \wedge y^*]$ かつ $[(x \wedge y)^{**} = x^{**} \wedge y^{**}]$ かつ $[x < x^{**}]$
- (5) $[x \wedge x^* = 0]$ かつ $[x \wedge y = 0 \longrightarrow x < y^*]$ (証明)
- (1) \Longrightarrow (2): $x \wedge 0^* = x \wedge 1 = x$. $0^{**} = (0^*)^* = 1^* = 0$.
- (2) === (3): 注意 3 の (1) と同様にできるが、 $0^* = 1$ 、 $1^* = 0$ を使わずに (2) の仮定だけで示すことができる。 === : $x \wedge y = 0$ とすると仮定より $x \wedge y^* = x \wedge (x \wedge y)^* = x \wedge 0^* = x$ で $x \leq y^*$ が成り立つ。 === : $x \leq y^*$ とすると $x \wedge y \leq y^* \wedge y = y \wedge y^* = y \wedge (y \wedge 0^*)^* = y \wedge (0^*)^* = y \wedge 0 = 0$ で $x \wedge y = 0$ が成り立つ。
- (3) = (4):注意3の(2)(7)(8)(3)の証明と同じである.
- $(4) === (5):[2] の注意 10 の (2) での証明と同様にできるが、仮定の(4)から <math>x < y ==> y^* < x^* \cdots$ ① と $x^{***} = x^*$ と $1^* = 0$ と $0^* = 1$ が成り立つことを確認する。 x < y とすると $x \lor y = y$ で $y^* = (x \lor y)^* = x^* \land y^*$ から $y^* < x^*$. また仮定より $x^* \le x^{***}$. $x \le x^{**}$ に①を使うと $x^{***} \le x^*$ で $x^{****} = x^*$ が成り立つ。 $0 = 1 \land 1^* = 1^*$ より $1^* = 0$. これより $1^{**} = 0^*$ で $1 \le 1^{**}$ から $1 \le 0^*$. 1^* この 1^* ここで 1^* から 1^* の 1^* の

[注意5]

- (1) 注意 4 の (2) は最大元 1 の代わりに 0^* を使ってもよいことを示している。つまり代数系 $\mathbf A$ から 1 を除いてもよい。
- (2) ① $[x \land y = 0 \implies x < y^*]$ ② $[x \land y = 0 \implies y < x^*]$ が成り立つ. [2]では②の形になっているが、本 論文では①の形にした. ②の形で考えると、注意 4 の (5) は A の任意の元 x が擬補元であることを示している。 つまり x と互いに素な元の最大元が x^* である.

§3 PDL のシーケントによる形式的体系 GPDL

[3], [4]と同様にシーケントの定義をする.

[定義4] (シーケント(式)の定義)

ワードの有限列をギリシア大文字 Γ , Δ などで表す。ワードの有限列 a_1,\ldots,a_m を Γ とし, b_1,\ldots,b_n を Δ とするとき,PDL での不等式 $a_1 \wedge \cdots \wedge a_m \leq b_1 \vee \cdots \vee b_n$ をシーケント(式) $\Gamma \longrightarrow \Delta$ で表す。ただし, Γ が空のとき($\Gamma = \emptyset$ と書く), $1 \leq b_1 \vee \cdots \vee b_n$ とし, $\Delta = \emptyset$ のときは $a_1 \wedge \cdots \wedge a_m \leq 0$ とする。 $\Gamma = \Delta = \emptyset$ の場合は考えない。

このとき, 擬補分配束 (PDL) のシーケントによる形式的体系 GPDL を [3], [4], [8] と同様に, 次のように定義する. [定義 5] (GPDL の定義)

[1] 始式

$$(B1) \ a \longrightarrow a \qquad (B2) \ 0 \longrightarrow \Delta \qquad (B3) \ \Gamma \longrightarrow 1$$

- [2] 推論規則
- (1) 構造に関する推論規則:

$$\begin{split} \frac{\Gamma \longrightarrow \Delta}{a, \ \Gamma \longrightarrow \Delta} \ (w \longrightarrow) & \frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \ a} \ (\longrightarrow w) \\ \frac{a, \ a, \ \Gamma \longrightarrow \Delta}{a, \ \Gamma \longrightarrow \Delta} \ (c \longrightarrow) & \frac{\Gamma \longrightarrow \Delta, \ a, \ a}{\Gamma \longrightarrow \Delta, \ a} \ (\longrightarrow c) \\ \frac{\Gamma_1, \ a, \ b, \ \Gamma_2 \longrightarrow \Delta}{\Gamma_1, \ b, \ a, \ \Gamma_2 \longrightarrow \Delta} \ (e \longrightarrow) & \frac{\Gamma \longrightarrow \Delta_1, \ a, \ b, \ \Delta_2}{\Gamma \longrightarrow \Delta_1, \ b, \ a, \ \Delta_2} \ (\longrightarrow e) \\ \frac{\Gamma_1 \longrightarrow \Delta_1, \ a}{\Gamma_1, \ \Gamma_2 \longrightarrow \Delta_1, \ \Delta_2} \ (cut) \end{split}$$

(2) 論理記号に関する推論規則:

$$\frac{a, \ \Gamma \longrightarrow \Delta}{a \wedge b, \ \Gamma \longrightarrow \Delta} \ (\wedge_1 \longrightarrow) \qquad \frac{b, \ \Gamma \longrightarrow \Delta}{a \wedge b, \ \Gamma \longrightarrow \Delta} \ (\wedge_2 \longrightarrow)$$

$$\frac{\Gamma \longrightarrow \Delta, a}{\Gamma \longrightarrow \Delta, a \vee b} \ (\longrightarrow \vee_1) \qquad \frac{\Gamma \longrightarrow \Delta, b}{\Gamma \longrightarrow \Delta, a \vee b} \ (\longrightarrow \vee_2)$$

$$\frac{a, \ \Gamma \longrightarrow \Delta}{a \vee b, \ \Gamma \longrightarrow \Delta} \ (\vee \longrightarrow) \qquad \frac{\Gamma \longrightarrow \Delta, a \quad \Gamma \longrightarrow \Delta, b}{\Gamma \longrightarrow \Delta, a \wedge b} \ (\longrightarrow \wedge)$$

$$\frac{a, \ \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow a^*} \ (\longrightarrow *) \qquad \frac{\Gamma \longrightarrow b}{b^*, \ \Gamma \longrightarrow} \ (* \longrightarrow *)$$

$$\frac{\Gamma \longrightarrow \Delta}{\Delta^* \longrightarrow \Gamma^*} \ (* \longrightarrow *)$$

ただし、 Γ が a_1 , ..., a_m のとき Γ^* は a_m^* , ..., a_1^* を表し、 $\Gamma = \emptyset$ のときは $\Gamma^* = \emptyset$ とする.

([8]では ($\lor \longrightarrow$) の Γ と ($\longrightarrow \land$) の Δ が共に空であり、($* \longrightarrow *$) の Γ 、 Δ は共に1元だけになっている. 本論文では分配束であるので、これらの制限はない:定理2のT8、T12°).

§4 PDL と GPDL の演繹的同値性

[3], [4]と同様に次の定義をする.

[定義6] (トの定義)

シーケント $\Gamma \longrightarrow \Delta$ が GPDL で証明可能であるとき、 $\vdash \Gamma \longrightarrow \Delta$ と書く.

[定義7] (トの定義)

不等式 $a \le b$ が PDL で成り立つとき $a \le b$ と書く.

[定義8] (PDL での等号の定義)

a, b をワードとする. $\vdash a \longrightarrow b$ かつ $\vdash b \longrightarrow a$ のとき $a \equiv b$ とすれば, \equiv は 同値関係である. そこで $A/_{\equiv}$ (A の \equiv による商集合)をあらためて A とし, \equiv を \equiv とみなしたものを PDL での等号とする. (つまり, リンデンバウム代数 (Lindenbaum algebra) 考える.)

このとき, [3], [4] と同様にして, 次のことが成り立つ.

[定理2] a, b をワードとするとき,次のことが成り立つ.

$$\models a \leq b$$
 $\Leftrightarrow b$

(証明

PDL のすべての公理 $(F1 \sim F9^\circ)$ が GPDL で証明可能であることを示せばよいが,これらと同値な $T1 \sim T12^\circ$ が GPDL で証明可能であることを示す. $T1 \sim T7^\circ$ は [3] の定理 2 の証明と同じである.

$$T10 := : \underbrace{x, y \longrightarrow}_{y^* \longrightarrow x^*} = : \underbrace{x, y \longrightarrow}_{y, x \longrightarrow} = : \underbrace{y \longrightarrow y}_{y^*, y \longrightarrow} \underbrace{x \longrightarrow y^*}_{y^{**}, x \longrightarrow}$$

$$\underbrace{y \longrightarrow y^*}_{y^{**}, x \longrightarrow} \underbrace{y \longrightarrow y^{**}}_{y^{**}, x \longrightarrow}$$

 $x \land (y \lor z) \longrightarrow (x \land y) \lor (x \land z)$

$$T11: \underbrace{x \longrightarrow x}_{\underbrace{x^*, x \longrightarrow}_{x, x^* \longrightarrow}} \qquad T12: \qquad \underbrace{\underbrace{y \longrightarrow y}_{\underbrace{x \land y \longrightarrow y}_{y}}}_{\underbrace{x, x^* \longrightarrow}_{x, x^* \longrightarrow}} \qquad \underbrace{T12^{\circ}: \underbrace{x \longrightarrow x}_{\underbrace{x \longrightarrow y, x}} \qquad \underbrace{y \longrightarrow y}_{\underbrace{y \longrightarrow y, x}}}_{\underbrace{x \land y \longrightarrow y, x}} \qquad \underbrace{\frac{x \lor y \longrightarrow y, x}{x \land y \longrightarrow y, x}}_{\underbrace{x^*, y^* \longrightarrow (x \lor y)^*}}}_{\underbrace{x^*, y^* \longrightarrow (x \lor y)^*}_{\underbrace{x^*, y^* \longrightarrow (x \lor y)^*}}}_{\underbrace{x^*, y^* \longrightarrow (x \lor y)^*}_{\underbrace{x^*, y^* \longrightarrow (x \lor y)^*}}}$$
(託明終)

[定理3] $a_1, \ldots, a_m, b_1, \ldots, b_n$ をワードとするとき, 次のことが成り立つ.

$$\vdash a_1, \ldots, a_m \longrightarrow b_1, \ldots, b_n$$
 ならば $\models a_1 \land \cdots \land a_m \leq b_1 \lor \cdots \lor b_n$

(証明)

 Γ が a_1, \ldots, a_m のとき $a_1 \wedge \cdots \wedge a_m$ を x で表す. Δ が b_1, \ldots, b_n のとき $b_1 \vee \cdots \vee b_n$ を y で表す.

GPDL の始式 (B1), (B2), (B3) はそれぞれ T1, T5, T5°から PDL で成り立つ. 次に GPDL の各推論規則の上式(上のシーケント)に対応する不等式が PDL で成り立つと仮定するとき,下式に対応する不等式が PDL で成り立つことを示せばよい.

 $(w \longrightarrow) \sim (\longrightarrow \land)$ は [3] の定理3の証明と同じである.

 $(\longrightarrow *)$: $\models a \land x \le 0$ とする. F4 より $a \land x = x \land a$ で T10 の \Longrightarrow から $\models x \le a^*$ が成り立つ.

 $(* \longrightarrow)$: $\models x < b$ とする. \land の単調性を使うと $\models b^* \land x < b^* \land b$. T11 から $\models b^* \land b < 0$ で $\models b^* \land x < 0$ が成り立つ.

 $(*\longrightarrow *)$: $\models x \leq y$ とすると T9 から $\models y^* \leq x^*$ が成り立つ.

(証明終)

以上により PDL と GPDL が演繹的に同値であることがわかる.

参考文献

- [1] 荒金 憲一, MS-algebra に双対な代数系について, 奈良高専研究紀要 28(1993), 105-111.
- [2] 荒金 憲一, ファジイ代数に関連する代数系について, 奈良高専研究紀要 31(1996), 81-89.
- [3] 荒金 憲一, MS 代数とストーン代数のシーケントによる形式化, 奈良高専研究紀要 33(1998), 119-127.
- [4] 荒金 憲一, 準ストーン代数のシーケントによる形式化, 奈良高専研究紀要 40(2005), 87-94.
- [5] R. Balbes and P. Dwinger, Distributive lattices, University of Missouri Press, Columbia, Missouri, 1974.
- [6] G. Gentzen, *Untersuchungen über das logische Schliessen*, Mathematische Zeitschrift 39(1935), 176-216, 405-431.
- [7] H.P. Sankappanavar, Semi-De Morgan algebras, The Journal of Symbolic Logic 52(1987), 712-724.
- [8] S. Tamura, *Decision procedure for pseudo-complemented lattices*, Proceedings of the 8th symposium on semi-groups (1984), 36-39.